a
DAQ System Test Plan

Table of Contents

31
Introduction

31.1
Revision History

31.2
Purpose

91.3
References

102
Test Items

102.1
Hardware Tests: Design Items

102.2
Hardware Tests: Hardware Test Cases and Test Procedures

102.3
Software Tests: Review Items

102.4
Software Tests: Software Test Cases and Test Procedures

102.5
Software Tests: Automated Test Procedures

102.6
Obtaining Hardware and Software

102.7
Site-Specific Tests

113
Items to Test

113.1
DAQ_IF Features to Test

113.2
PPDIO96 Features to Test

113.3
PPRelay-12 Features to Test

113.4
PPSSR-16 Features to Test

123.5
PPAIO-16/4 Features to Test

123.6
PPAC4 Features to Test

123.7
PPAC420 Features to Test

123.8
Firmware Features to Test

144
Items Not Tested

155
Testing Approach

155.1
Test Engineer Requirements

155.2
Test Deliverables

155.3
Testing the DAQ_IF Board (Hardware Test)

165.4
Testing the PPDIO96 Board (Hardware Test)

165.5
Testing the PPAIO-16/4 Board (Hardware Test)

175.6
Testing the PPRelay-12 Board (Hardware Test)

185.7
Testing the PPSSR-16 Board (Hardware Test)

185.8
Testing the PPAC4 Board (Hardware Test)

185.9
Testing the PPAC420 Board (Hardware Test)

195.10
Testing the Netburner Firmware for the DAQ System

Note: All trademarks and registered trademarks contained herein are the property of their respective owners. Plantation Productions, Inc., does not claim ownership of any trademarks within this document other than those specifically owned by Plantation Productions, Inc.

Note: TRIGA™ is a registered trademark of General Atomics, Inc.

1 Introduction
The Plantation Productions, Inc., DAQ System is a set of hardware circuit boards and firmware that provide data acquisition and control functionality. Although originally intended for TRIGA™ research reactor data acquisition and control the DAQ System is sufficiently generic that it can be use for arbitrary systems requiring analog and digital I/O.
Revision History

Revision 1.0: Randall Hyde Sept 23, 2017

Purpose

This document includes the System Test Plan for the Plantation Productions' Open Source/Open Hardware digital data acquisition system. The purpose of this software test plan is to describe how to test the Plantation Productions’ Open Source/Open Hardware DAQ (data acquisition and control) hardware and software.

This plan covers tests of the software (and hardware) performed by Plantation Productions, Inc., for the software (and hardware) associated with the following products:

· DAQ_IF: DAQ Interface board

· PPDIO96: 96-bit digital I/O board

· PPAIO-16/4: 16-input, 4-output analog I/O board

· PPRelay-12: 12-output mechanical relay board (+4 TTL outputs)

· PPSSR-16: 16-output solid-state relay board

· PPRlyio-12: 12-channel digital I/O board with relays

· PPOpto-12: 12-channel optical isolator for digital inputs

· PPAC4: 4-channel analog conditioning module

· PPAC420: 8-channel 4-20mA analog signal conditioning

· PPDO-48: 48-channel digital output module
The system software and hardware is covered under the Creative Commons (CC BY 4.0) found here:

https://creativecommons.org/licenses/by/4.0/
For the purposes of attribution, all work must be attributed to "Randall Hyde, Plantation Productions, Inc., Copyright 2017"

This document has been developed per the guidance provided in IEEE Std 829-1998 and IEEE Std 829-2008, IEEE Standard for Software Test Documentation.

Definitions, Acronyms & Abbreviations
Note: many of these definitions were taken directly from IEEE Std 829-2008.

	Acceptance Testing
	 (A) Testing conducted to establish whether a system satisfies its acceptance
criteria and to enable the customer to determine whether to accept the system. (B) Formal testing conducted

to enable a user, customer, or other authorized entity to determine whether to accept a system or

component. This is analogous to qualification testing in IEEE/EIA Std 12207.0-1996 [B21]. Another

commonly used synonym is validation testing.

	Activity
	 An element of work performed during the implementation of a process. An activity normally
has an expected duration, cost, and resource requirements. Activities are often subdivided into tasks.

	Address
	 To deal with, to take into consideration; (specifically) to decide whether and when a defined documentation topic is to be included, either directly or by reference to another document. Make a decision as to whether an item is to be recorded prior to the test execution (in a tool or not in a tool), recorded during the test execution, recorded post-test execution, not recorded (addressed by the process), or excluded.

	Anomaly
	 Anything observed in the documentation or operation of software or system that deviates
from expectations based on previously verified software products, reference documents, or other sources of indicative behavior. (adopted from IEEE Std 610.12-1990 [B3])

	Checkout
	 Testing conducted in the operational or support environment to ensure that a software product performs as required after installation. (adopted from IEEE Std 610.12-1990 [B3])

	Component
	One of the parts that make up a system. A component may be hardware or software and may be subdivided into other components. Note: The terms “module,” “component,” and “unit” are often used interchangeably or defined to be sub elements of one another in different ways depending upon the context. The relationship of these terms is not yet standardized.

For this plan, a component is defined as the combination of units and modules that are included in the source files required for a major software task.
 (adopted from IEEE Std 610.12-1990 [B3])

	Component Integration Testing
	 Testing of groups of related components.

	Component Testing
	 Testing of individual hardware or software components. (adopted from IEEE Std 610.12-1990 [B3])

	Criticality
	 The degree of impact that a requirement, module, error, fault, failure, or other characteristic has on the development or operation of a system. (adopted from IEEE Std 610.12-1990 [B3])

	Development Testing
	 Testing conducted to establish whether a new software product or softwarebased system (or components of it) satisfies its criteria. The criteria will vary based on the level of test being performed.

	Document
	 (A) A medium, and the information recorded on it, that generally has permanence and can be read by a person or a machine. Examples in software engineering include project plans, specifications, test plans, and user manuals. (B) To create a document as in (A). (adopted from IEEE Std 610.12-1990 [B3])

	Documentation
	 (A) A collection of documents on a given subject. (B) Any written or pictorial information describing, defining, specifying, reporting, or certifying activities, requirements, procedures, or results. (C) The process of generating or revising a document. (D) The management of documents, including identification, acquisition, processing, storage, and dissemination. (adopted from IEEE Std 610.12-1990 [B3])

	Feature
	 A distinguishing characteristic of a system item (includes both functional and nonfunctional attributes such as performance and reusability).

	Functional Testing
	(1) Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to selected inputs and execution conditions. (2) Testing conducted to evaluate the compliance of a system or component with specified functional requirements. [IEEE Std 610.12-1990]

	Integration Testing
	 Testing in which software components, hardware components, or both are combined and tested to evaluate the interaction among them. This term is commonly used for both the integration of components and the integration of entire systems. (adopted from IEEE Std 610.12-1990 [B3])

	Integrity Level
	 (A) The degree to which software complies or must comply with a set of stakeholder-selected software and/or software-based system characteristics (e.g., software complexity, risk assessment, safety level, security level, desired performance, reliability, or cost), defined to reflect the importance of the software to its stakeholders. (B) A symbolic value representing this degree of compliance within an integrity level scheme.

	Integrity Level Scheme
	 A set of system characteristics (such as complexity, risk, safety level, security level, desired performance, reliability, and/or cost) selected as important to stakeholders, and arranged into discrete levels of performance or compliance (integrity levels), to help define the level of quality control to be applied in developing and/or delivering the software.

	Interface Requirements Specification (IRS)
	 Documentation that specifies requirements for interfaces between or among systems or components. These requirements include constraints on formats and timing. This may be included as a part of the Software Requirements Specification. (adopted from IEEE Std 610.12-1990 [B3] and IEEE Std 1012TM -2004 [B10])

	Life Cycle Processes
	 A set of interrelated activities that result in the development or assessment of software products. Each activity consists of tasks. The life cycle processes may overlap one another.

	Minimum Tasks
	 Those tasks required for the integrity level assigned to the software to be tested.

	Normal Operating Condition
	Condition of the console when the console is operational and no unexplained statuses are present

	Operational
	 (A) Pertaining to a system or component that is ready for use in its intended environment. (B) Pertaining to a system or component that is installed in its intended environment. (C) Pertaining to the environment in which a system or component is intended to be used. (adopted from IEEE Std 610.12-1990 [B3])

	Operational Testing
	 Testing conducted to evaluate a system or component in its operational environment. (adopted from IEEE Std 610.12-1990 [B3])

	Optional Tasks
	 Those tasks that may be added to the minimum testing tasks to address specific requirements. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Process
	 A set of interrelated activities, which transform inputs into outputs.

	Qualification Testing
	 Conducted to determine whether a system or component is suitable for operational use. See also: acceptance testing ; development testing ; operational testing.

	Quality
	 (A) The degree to which a system, component, or process meets specified requirements. (B) The degree to which a system, component, or process meets customer or user needs or expectations. (adopted from IEEE Std 610.12-1990 [B3])

	Regression Testing
	Selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements. [IEEE Std 610.12-1990]

	Request for Proposal (RFP)
	 A document used by the acquirer as the means to announce its intention to potential bidders to acquire a specified system, software product, or software service. (adopted from IEEE Std 1074-2006 [B17])

	Required Inputs
	 The set of items necessary to perform the minimum testing tasks mandated within any life cycle activity. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Required Outputs
	 The set of items produced as a result of performing the minimum testing tasks mandated within any life cycle activity.

	Reusable Product
	 A product developed for one use but having other uses, or one developed specifically to be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to, commercial off-the-shelf (COTS) products, acquirer-furnished products, products in reuse libraries, and preexisting developer products. Each use may include all or part of the product and may involve its modification. This term can be applied to any software or system product (for example, requirements or architectures), not just to software or system itself. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Risk
	The combination of the probability of occurrence and the consequences of a given future undesirable event. Risk can be associated with software and/or systems. (B) The combination of the probability of an abnormal event or failure and the consequence(s) of that event or failure to a system’s components, operators, users, or environment. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Scenario
	 (A) A description of a series of events that may occur concurrently or sequentially. (B) An account or synopsis of a projected course of events or actions. (adopted from IEEE Std 1362TM-1998 [B20]) (C) Commonly used for groups of test cases; synonyms are script, set, or suite.

	Software
	 Computer programs, procedures, and possibly associated documentation and data pertaining to the operation of a computer system. (adopted from IEEE Std 610.12-1990 [B3])

	Software-Based Systems
	 Computer systems that are controlled by software.

	Software Design Description (SDD)
	 A representation of software created to facilitate analysis, planning, implementation, and decision making. The software design description is used as a medium for communicating software design information, and it may be thought of as a blueprint or model of the system. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Software Requirements Specification (SRS)
	 Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. (adopted from IEEE Std 610.12-1990 [B3])

	STC
	Software Test Case

	STP
	Software Test Procedure

	Systems Integration Testing
	 Testing conducted on multiple complete, integrated systems to evaluate their ability to communicate successfully with each other and to meet the overall integrated systems’ specified requirements.

	SyRS
	System Requirements Specification

	System Testing
	 Testing conducted on a complete, integrated system to evaluate the system’s compliance with its specified requirements. (adopted from IEEE Std 610.12-1990 [B3])

	Task
	 (A) The smallest unit of work subject to management accountability. A task is a well-defined work assignment for one or more project members. Related tasks are usually grouped to form activities. (adopted from IEEE Std 1074-2006 [B17]). (B) In Micro-C/OS a task is synonymous with a thread of execution.

	Test
	 (A) A set of one or more test cases. (B) A set of one or more test procedures. (C) A set of one or more test cases and procedures. (adopted from IEEE Std 610.12-1990 [B3] (D) The activity of executing (A), (B), and/or (C).

	Test Approach
	 A particular method that will be employed to pick the particular test case values. This may vary in specificity from very general (e.g., black box or white box) to very specific (e.g., minimum and maximum boundary values).

	Test Case
	 (A) A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. (B) Documentation specifying inputs, predicted results, and a set of execution conditions for a test item. (adopted from IEEE Std 610.12-1990 [B2])

	Test Class
	 A designated grouping of test cases.

	Test Design
	Documentation specifying the details of the test approach for a software feature or combination of software features and identifying the associated tests (commonly including the organization of the tests into groups). (adopted from IEEE Std 610.12-1990 [B2])

	Test Effort
	 The activity of performing one or more testing tasks.

	Test Level
	 A separate test effort that has its own documentation and resources (e.g., component, component integration, system, and acceptance).

	Testing
	(1) The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component. (2) The process of analyzing a software item to detect the differences between existing and required conditions (that is, bugs) and to evaluate the features of the software items. [IEEE Std 610.12-1990].

	Testing Task Iteration
	 A task that is re-performed during maintenance after having been originally performed during development.

	Test Item
	 A software or system item that is an object of testing.

	Test Plan
	 (A) A document describing the scope, approach, resources, and schedule of intended test activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning. (B) A document that describes the technical and management approach to be followed for testing a system or component. Typical contents identify the items to be tested, tasks to be performed, responsibilities, schedules, and required resources for the testing activity. (adopted from IEEE Std 610.12-1990 [B2]) The document may be a Master Test Plan or a Level Test Plan.

	Test Procedure
	 (A) Detailed instructions for the setup, execution, and evaluation of results for a given test case. (B) A document containing a set of associated instructions as in (A). (C) Documentation that specifies a sequence of actions for the execution of a test. (adopted from IEEE Std 982.1TM-2005 [B7])

	Testware
	 All products produced by the testing effort, e.g., documentation and data.

	User Documentation
	 All documentation specifically written for users of a system, such as online help text and error messages, compact disc or hard copy system description, technical support manual, user manual, all system training materials, and release notes for patches and updates.

	Validation
	 (A) The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements. (adopted from IEEE Std 610.12-1990 [B3]) (B) The process of providing evidence that the software and its associated products satisfy system requirements allocated to software at the end of each life cycle activity, solve the right problem (e.g., correctly model physical laws, implement business rules, or use the proper system assumptions), and satisfy intended use and user needs.

	Verification
	 (A) The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. (adopted from IEEE Std 610.12-1990 [B3]) (B) The process of providing objective evidence that the software and its associated products comply with requirements (e.g., for correctness, completeness, consistency, and accuracy) for all life cycle activities during each life cycle process (acquisition, supply, development, operation, and maintenance), satisfy standards, practices, and conventions during life cycle processes, and successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle activities (e.g., building the software correctly).

The terms and definitions from IEEE Std 610.12-1990, not explicitly present here, are incorporated herein by reference.

References
NOTE:
Listing of a document in this references section means that the reference was used in the development of this document and does not mean that this document or testing comply with that reference.
Government Regulations, Standards and Publications

	Issued By
	Document Identity
	Title

	NRC
	RG 1.170
	Software Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

Industry Standards

	Issued By
	Document Identity
	Title

	IEEE
	IEEE Std 610.12-1990
	IEEE Glossary of Software Engineering Terminology

	IEEE
	IEEE Std 829-1998
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 829-2008
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 1008-1987
	IEEE Standard for Software Unit Testing

	IEEE
	IEEE Std 1012-2004
	IEEE Standard for Software Verification and Validation

1 Test Items
The hardware and software test procedures shall test the items the following subsections describe. The test shall cover the hardware and software for the DAQ system. With respect to software, the software to be tested is the DAQ firmware running on the Netburner SBC module connected to a DAQ_IF board.
Hardware Tests: Design Items

The hardware requirements inspection/review list shall cover those design items that are fixed in the hardware design and do not vary on a manufactured board-by-board basis. These design items need only be checked once (or whenever the design changes, which prompts a re-review of the hardware design).

Hardware Tests: Hardware Test Cases and Test Procedures

The hardware test procedures (and the hardware test cases that form the basis for the test procedures) test those items that could vary on a board-by-board basis (e.g., because of bad construction). These design items must be run on each and every board built into a system.

Software Tests: Review Items

Certain software tests may be impractical or impossible to perform. The software review list document (DAQ SR.doc) provides a review checklist for reviewing the source code to check such items.

Software Tests: Software Test Cases and Test Procedures

For software items that can be tested, the DAQ STP.doc document will contain the test procedures to run. Manual tests (specified in the STP) shall be limited in scope in order to make running the tests practical.

Software Tests: Automated Test Procedures

Wherever possible, an automated test procedure shall execute to run tests in the tests procedure. Because an automated test procedure is much faster than a manual test procedure, automated tests will be more in-depth (in fact, exhaustive where possible).

Obtaining Hardware and Software

Running the hardware tests involves constructing the individual hardware boards. Running the software tests involves putting together a hardware platform specific to a given installation and extracting the tests specific to that installation. When running the automated test procedure, you must first construct the automated test fixture consisting of several DAQ modules wired together (see the test fixture schematic for more details).

Site-Specific Tests

The tests this test plan describes are generic tests for the entire Plantation Productions’ DAQ system. For a specific site involving a unique board topology you will need to construct a site-specific test plan and set of tests.
2 Items to Test
This test plan will test the features the following subsections describe.

DAQ_IF Features to Test

The test procedures will test the following features on the DAQ_IF board:

· Serial communications (hardware tests, Teensy 3.2 only)

· I2C bus operation

· I2C multiplexer operation

· SPI bus operation

· Watchdog timer operation

· Watchdog timer refresh

· Watchdog timer reset

PPDIO96 Features to Test

The test procedures will test the following features on the PPDIO96 board:

· Inputs from all 96 I/O pins

· Outputs to all 96 I/O pins

· Polarity on I/O pins

· Pullup resistor on I/O pins

· Hi-Z inputs when pullups are not programmed

· J2[38] pin operation

· Reset operation

· Dip switch settings

· Daisy-chained board operations

· Power LED operation

PPRelay-12 Features to Test

The test procedures will test the following features on the PPRelay-12 board:

· Outputs to all 12 relays

· Outputs to 4 auxiliary (TTL) output pins

· Proper operation of LEDs on each channel

· SPDT (NC/COM/NO) operation

· Reset operation

· Failsafe on power up

· Failsafe on watchdog timeout

· Daisy-chaining of PPRelay-12 and PPSSR-16 boards

PPSSR-16 Features to Test

The test procedures will test the following features on the PPSSR-16 board:

· Outputs to all 16 relays

· Proper operation of LEDs on each channel

· Reset operation

· Failsafe on power up

· Failsafe on watchdog timeout

· Daisy-chaining of PPRelay-12 and PPSSR-16 boards

PPAIO-16/4 Features to Test

The test procedures will test the following features on the PPAIO-16/4 board:

· Inputs from all 16 single-ended inputs

· Inputs from 8 differential inputs

· Outputs to all 4 analog outputs

· Calibrating/adjusting analog outputs

PPAC4 Features to Test

The test procedures will test the following features on the PPC4 board:

· Inputs from all 4 single-ended inputs (±10V inputs)

· 4 differential outputs, as appropriate for inputs

· Calibrating/adjusting analog outputs

PPAC420 Features to Test

The test procedures will test the following features on the PPC420 board:

· Inputs from all 8 current source inputs (0-20 mA inputs)

· 8 single-ended outputs (-1.25 to +5V), as appropriate for inputs (0-20 mA)

· Calibrating/adjusting analog outputs

Firmware Features to Test

The test procedures will test the following commands the Netburner firmware implements:

· reset
· cleanup

· ppdio boards

· ppdio dir

· ppdio pullup

· ppdio filter

· ppdio polarity

· ppdio din

· ppdio dout

· ppdio debounce

· ppdo boards

· ppdo dout

· ppdo din

· ppdo type

· ppaio boards

· ppio gain

· ppaio filter
· ppaio ain

· ppaio aout

· ppaio type

3 Items Not Tested
This test plan will omit tests for the features:

· PPDO-48 board (to be handled in a later revision of the tests)

· PPRlyio-12 board (to be handled in a later revision of the tests)

· Raspberry PI I/O on the DAQ_IF board (this test plan only covers Netburner I/O)

· Teensy 3.2 I/O on the DAQ_IF board (a few tests use the Teensy 3.2, but as a general rule this test plan only covers the firmware running on the Netburner Mod54415 module.

· Full fanout on I2C, PPDO, and PPDIO96 busses (off the DAQ_IF board). Tests are impractical.

· The tests will not cover certain firmware commands that are intended for testing/debugging purposes only (not part of the official/documented test set).

4 Testing Approach
Test Engineer Requirements
As the Plantation Productions, Inc., DAQ System involves complex hardware and software, the test engineer should be comfortable compiling and running software, trouble shooting hardware (specifically, software controlled hardware), and be comfortable with tools such as DMMs (digital multimeters), Oscilloscopes, and logic analyers. Soldering and PCB modification skills are a big plus. The test engineer should be able to read C++ and (big plus) Swift source code.
Test Deliverables

When a test engineer runs one or more tests on the DAQ system, the engineer must produce the following deliverables:

· Test logs: A test log is a list of the following items for each test:

· Date/Time of test

· Name of test (what is being tested)

· Pass/fail indication

· Signature of test engineer

· If the test fails, a description of how to reproduce the failure (e.g., list of inputs/steps that resulted in the failure).

· Test incident/defect reports

If there were any failures, the test engineer should produce defect report. The defect report should contain the following items:

1. Date/Time of defect discovery/report

2. Version/revision of the defective software/hardware

3. Name of person who discovered the defect

4. Brief description of defect

5. Detailed description of how to reproduce the defect

6. Severity of defect (catastrophic, serious, marginal, minimal)

7. Any appropriate input/output data associated with the defect

Testing the DAQ_IF Board (Hardware Test)

Testing the DAQ_IF board is accomplished using a DAQ_IF test fixture. The test fixture is defined in Eagle file DAQIF_Test.sch (at Plantation Productions, this circuit was wired by hand on a breadboard).
A 28-pin plug on the test fixture connects to the Teensy 3.2 socket on the DAQ_IF board. Two other plugs on the test fixture connect to the PPDO and PPDIO96 bus connectors on the DAQ_IF board. Software written for the Teensy 3.2 on the test fixture (source file: DAQIF_Test.ino) writes to various output pins on the Teensy and reads the (expected) results back on Teensy pins as the data flows from the 28-pin plug to the DAQ IF board and back through the PPDO and PPDIO96 connectors. For the most part, the test is fully automated (there is one manual test). The test fixture does not test the I2C busses. Later tests handle checking those pins. This test verifies that the SPI (and other) traces on the board are correct, the soldering is correct, and there are no shorts or opens on these signal lines.
Note that testing the DAQ IF board does require a functioning (and manually checked out) DAQ IF test fixture, but it does not require any other working DAQ system boards (at least, not until checking out the i2c pins later).

The DAQIF_Test.ino source file is a Teensy 3.2/Arduino “sketch” program. To compile and run this program you must load it into the Arduino IDE that is set up for the Teensy 3.2. From the Arduino IDE you can compile and run the program and note the test output on the Arduino serial output screen.

In the event of a test failure, the test engineer will have to trace through the circuit. The DAQ IF schematic, a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the DAQ IF. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).

Testing the PPDIO96 Board (Hardware Test)

Testing the PPDIO96 digital I/O board requires a working DAQ IF board (presumably checked out in the previous section). Testing the PPDIO96 board requires installing a Teensy 3.2 CPU module on the DAQ IF, connecting the PPDIO96 board to the PPDIO96 bus connector on the DAQ_IF, and running the PPDIOTest.ino program in the test suite. This test is not fully automated. Instead, it simply reads all 96 inputs from the PPDIO96 boards and displays their values on the Arduino serial output screen. Using a jumper, the test engineer will short each of the 96 input pins and verify that the appropriate output bit goes from zero to one on the output screen.

The PPDIOTest.ino source file is a Teensy 3.2/Arduino “sketch” program. To compile and run this program you must load it into the Arduino IDE that is set up for the Teensy 3.2. From the Arduino IDE you can compile and run the program and note the test output on the Arduino serial output screen.

In the event of a test failure, the test engineer will have to trace through the circuit. The PPDIO96 schematic, a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting. A logic analyzer (minimum four channels for SPI sniffing) is extremely useful when tracking down PPDIO96 issues.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the PPDIO96. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).
Testing the PPAIO-16/4 Board (Hardware Test)

Testing the PPAIO-16/4 analog I/O board requires a working DAQ IF board (presumably checked out in the earlier section). Testing the PPAIO-16/4 board requires installing a Teensy 3.2 CPU module on the DAQ IF board, connecting the PPAIO-16/4 board to one of the four I2C ports on the DAQ IF board, and running the PPAIO_Test.ino or PPAIO2_Test.ino programs in the Arduino Integrated development environment (IDE). These tests are not fully automated. Instead, they write values to the DAC and expect the user to measure the voltage outputs at various test pins. They also instruct the user to wire a DAC output to each of the analog inputs, write a value to the DAC, and have the test engineer verify the return value is within range (of some error tolerance).

The PPAIO_Test.ino and PPAIO2_Test.ino source files are Teensy 3.2/Arduino “sketch” programs. To compile and run these program you must load them into the Arduino IDE that is set up for the Teensy 3.2. From the Arduino IDE you can compile and run the program and note the test output on the Arduino serial output screen.

In the event of a test failure, the test engineer will have to trace through the circuit. The PPAIO-16/4 schematic, a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting. A logic analyzer (minimum two channels for I2C sniffing) is extremely useful when tracking down PPAIO-16/4 issues.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the PPAIO-16/4. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).
Testing the PPRelay-12 Board (Hardware Test)

Testing the PPRelay-12 digital output board requires a working DAQ IF board (presumably checked out in the earlier section). Testing the PPRelay-12 board requires installing a Teensy 3.2 CPU module on the DAQ IF board, connecting the PPRelay-12 board to the PPDO port on the DAQ IF board, and running the PPRelay_Test.ino program in the Arduino Integrated development environment (IDE). These tests are not fully automated. Instead, they write values to the relays (shift registers) and expect the user to measure the impedance on the relay contacts (NO/COM/NC) and observe the LEDs on the board.

The PPRelay_Test.ino source file is a Teensy 3.2/Arduino “sketch” program. To compile and run this program you must load it into the Arduino IDE that is set up for the Teensy 3.2. From the Arduino IDE you can compile and run the program and note the test output on the Arduino serial output screen.

In the event of a test failure, the test engineer will have to trace through the circuit. The PPRelay-12 schematic, a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting. A logic analyzer (minimum four channels for SPI sniffing) is extremely useful when tracking down PPRelay-12 issues.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the PPRelay-12. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).
Testing the PPSSR-16 Board (Hardware Test)

Testing the PPSSR-16 digital output board requires a working DAQ IF board (presumably checked out in the earlier section). Testing the PPSSR-16 board requires installing a Teensy 3.2 CPU module on the DAQ IF board, connecting the PPSSR-16 board to the PPDO port on the DAQ IF board, and running the SSR_Test.ino program in the Arduino Integrated development environment (IDE). These tests are not fully automated. Instead, they write values to the solid-state relays (shift registers) and expect the user to measure the impedance on the relay contacts and observe the LEDs on the board.

The SSR_Test.ino source file is a Teensy 3.2/Arduino “sketch” program. To compile and run this program you must load it into the Arduino IDE that is set up for the Teensy 3.2. From the Arduino IDE you can compile and run the program and note the test output on the Arduino serial output screen.

In the event of a test failure, the test engineer will have to trace through the circuit. The PPSSR-16 schematic, a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting. A logic analyzer (minimum four channels for SPI sniffing) is extremely useful when tracking down PPSSR-16 issues.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the PPSSR-16. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).
Testing the PPAC4 Board (Hardware Test)

Testing the PPAC4 analog conditioning board is a manual process. The test procedure requires a variable power supply, a DMM, and (optionally) an oscilloscope. The test procedure will lead the test engineer through the process of calibrating and testing the four channels on the PPAC4 board.
In the event of a test failure, the test engineer will have to trace through the circuit. The PPAC4 schematic, a variable power supply (at least ±10V), a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the PPAC4. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).
Testing the PPAC420 Board (Hardware Test)

Testing the PPAC4 4-20 mA analog conditioning board is a manual process. The test procedure requires a current source (e.g., Keithley 220), a DMM, and (optionally) an oscilloscope. The test procedure will lead the test engineer through the process of calibrating and testing the eight channels on the PPAC420 board.
In the event of a test failure, the test engineer will have to trace through the circuit. The PPAC420 schematic, a current source (at least 0..20mA), a DMM (digital multimeter), and an oscilloscope are essential tools for such troubleshooting.

Presumably, there are no design issues present by the time a non-Plantation Productions test engineer works through a test of the PPAC420. Normal errors (e.g., missing solder connections, cold solder joints, shorts across pads (excess solder) will be corrected by the test engineer. In the event there are design issues, an electronics techinician/engineer may need to make “cuts and jumps” on the circuit board (or redesign the circuit board to handle the new design requirements).
Testing the Netburner Firmware for the DAQ System

Hardware Required for the Automated Test Procedure
Testing the firmware for the DAQ system requires a DAQ system test fixture comprised of the following (tested) components:
· (1) Netburner MOD54415 module loaded with the latest firmware

· (1) DAQ IF interface board

· (4) PPDIO96 parallel I/O boards

· (1) PPRelay-12 board

· (1) SSR-16 board

· (1) PPAIO-16/4 board

· (3) Custom analog multiplexor boards (designed specifically for the test fixture)
· (1) Raspberry PI 3+ Model B (requires downloading Swift language compiler and GCC compiler suite and appropriate development tools) w/display and keyboard (optional mouse, test suite application does not use a mouse).

· (1) Ethernet connection between Raspberry Pi and Netburner MOD54415

· Appropriate +5V and ±12V power supplies for all the boards (Netburner can run off 5V from a microUSB cable or off a 9V power supply with 2.1mm barrel jack).

The test fixture schematic is an Eagle file (DAQIF_Test.sch/DAQIF_Test.pdf). The custom analog multiplexer circuit board is also an Eagle file (TestFixtureBridge.sch/TestFixtureBridge.pdf) that uses three Sparkfun 16-input analog multiplexer breakout boards (https://www.sparkfun.com/products/9056) to check for proper pullup/Hi-Z operation of the PPDIO96 boards.
The source code for the automated test suite is found in the “TestSuite” folder and consists of the following files:

· dctest.c: C++ source file with network interface code for test suite

· dtest.h: header file providing external definitions for functions in dctest.c

· dtest.swifth: Swift source file for test application

· makefile: “make” file to build the test application

The dtest.swift/dtest.c application automatically runs most of the tests in the Software Test Procedure for the DAQ firmware. Only the first couple of test procedures in the set must be run manually.

Unit/Integration Testing

The automated test suite provides unit testing and integration testing of the DAQ firmware. In particular, the test suite application performs tests based on the the DAQ STP (Software Test Procedures) which traces back to the Software Test Cases (STC), Software Requirements Specification (SRS), and System Requirements Specification (SyRS, which is also the functional requirements document). The automated test suite provides a superset of the tests called for in the Software Test Cases. The STC items assume a manual execution of the test procedures and the test cases tend to “cherry pick” various boundary cases to reduce the number of tests the test engineer will have to manual perform. The automated test suite will often perform an exhaustive test (where possible) providing a higher-quality test run.

The automated test suite cannot function as a Factory Acceptance Test (FAT) or Site Acceptance Test (SAT) because a given site will likely use a completely different DAQ board topology than the test fixture. A separate test procedure will be necessary for an actual site-specific implementation of the DAQ system.

Regression Testing Requirements

Because the automated test procedure runs relatively quickly (less than an hour) and requires no human intervention, Plantation Productions, Inc., recommends rerunning the entire test suite application whenever changes are made to the firmware source code.

The following manual tests should be run as appropriate:

· DAQ_STP_001: software load. As this test procedure loads the software onto the Netburner, the test engineer should manually run this procedure prior to running any (formal) tests on firmware changes

· DAQ_STP_002: Serial Port Commands. The automated test procedure does not test the serial port. The test engineer should run this test procedure after making any changes to the serial.cpp source file (in the DAQ firmware) or any other changes that make use of the Netburner’s serial ports.

· DAQ_STP_003: USB Port Commands. The automated test procedure does not test the usb port. The test engineer should run this test procedure after making any changes to the usb.cpp source file (in the DAQ firmware) or any other changes that make use of the Netburner’s USB/COM1 port.

· DAQ_STP_004: Ethernet Port Commands. While the automated test application makes use of the Ethernet port for command transfer, it does not specifically test Ethernet configuration options. The test engineer should run this test procedure after making any changes to the ethernet.cpp source file (in the DAQ firmware) or any other changes that might interfere with the configuration of the Ethernet port on the Netburner.
Pass/Fail Requirements

The automated test procedure must run to completion without any failures for the test to succeed. The only exception to this rule are those tests that check Hi-Z inputs on the PPDIO96 board. Because Hi-Z inputs register arbitrary values, it is possible for the Hi-Z input test (test STP_005 when testing floating input bits), to fail. Rerunning the test (even multiple times) with at least one successful run through the floating bits section is considered a pass.
	
	PPDAQ

Plantation Productions' Data Acquisition System
	PPDAQ-TP
Page 1

